Biliary excretion of technetium-99m-sestamibi in wild-type dogs and in dogs with intrinsic (ABCB1-1Delta mutation) and extrinsic (ketoconazole treated) P-glycoprotein deficiency.

نویسندگان

  • J C Coelho
  • R Tucker
  • J Mattoon
  • G Roberts
  • D K Waiting
  • K L Mealey
چکیده

P-glycoprotein (P-gp), the product of ABCB1 gene, is thought to play a role in the biliary excretion of a variety of drugs, but specific studies in dogs have not been performed. Because a number of endogenous (ABCB1 polymorphisms) and exogenous (pharmacological P-gp inhibition) factors can interfere with normal P-gp function, a better understanding of P-gp's role in biliary drug excretion is crucial in preventing adverse drug reactions and drug-drug interactions in dogs. The objectives of this study were to compare biliary excretion of technetium-99m-sestamibi ((99m)Tc-MIBI), a radio-labelled P-gp substrate, in wild-type dogs (ABCB1 wild/wild), and dogs with intrinsic and extrinsic deficiencies in P-gp function. Dogs with intrinsic P-gp deficiency included ABCB1 mut/mut dogs, and dogs with presumed intermediate P-gp phenotype (ABCB1 mut/wild). Dogs with extrinsic P-gp deficiency were considered to be ABCB1 wild/wild dogs treated with the P-gp inhibitor ketoconazole (5 mg/kg PO q12h x 9 doses). Results from this study indicate that ABCB1 mut/mut dogs have significantly decreased biliary excretion of (99m)Tc-MIBI compared with ABCB1 wild/wild dogs. Treatment with ketoconazole significantly decreased biliary excretion of (99m)Tc-MIBI in ABCB1 wild/wild dogs. P-gp appears to play an important role in the biliary excretion of (99m)Tc-MIBI in dogs. It is likely that concurrent administration of a P-gp inhibitor such as ketoconazole will decrease P-gp-mediated biliary excretion of other substrate drugs as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-glycoprotein contributes to the blood-brain, but not blood-cerebrospinal fluid, barrier in a spontaneous canine p-glycoprotein knockout model.

P-glycoprotein is considered to be a major factor impeding effective drug therapy for many diseases of the central nervous system (CNS). Thus, efforts are being made to gain a better understanding of P-glycoprotein's role in drug distribution to brain parenchyma and cerebrospinal fluid (CSF). The goal of this study was to validate and introduce a novel P-glycoprotein-deficient (ABCB1-1Delta) ca...

متن کامل

Effect of EHDP on calcium accumulation and technetium-99m pyrophosphate uptake in experimental myocardial infarction.

Ethane-l-hydroxy-1,1-diphosphonate (EHDP) inhibits bone mineral growth. This study was performed to test the hypothesis that EHDP would interfere with the process of calcium uptake and deposition in evolving myocardial infarction and thereby influence other parameters, including technetium-99m pyrophosphate (Tc-99m PYP) uptake and scintigraphic visualization of the infarcts. Permanent occlusion...

متن کامل

Sa251 What You Don’t Know about P-glycoprotein Can Hurt You (& Your Patients!)

Overview of the Issue P-glycoprotein, encoded by the MDR1 (also known as the ABCB1 gene) plays an important role in the absorption, distribution, metabolism and excretion of many drugs. It is not surprising, then, that dysfunction of P-glycoprotein increases susceptibility to drug toxicity (antiparasitic agents, anti-diarrheal drugs, chemotherapeutic drugs, acepromazine, butorphanol and others)...

متن کامل

Effect of EHDP on Calcium Accumulation and Technetium-99m Pyrophosphate Uptake in Experimental Myocardial Infarction

Ethane-l-hydroxy-1,1-diphosphonate (EHDP) inhibits bone mineral growth. This study was performed to test the hypothesis that EHDP would interfere with the process of calcium uptake and deposition in evolving myocardial infarction and thereby influence other parameters, including technetium-99m pyrophosphate (Tc-99m PYP) uptake and scintigraphic visualization of the infarcts. Permanent occlusion...

متن کامل

Effect of EHDP

Ethane-l-hydroxy-1,1-diphosphonate (EHDP) inhibits bone mineral growth. This study was performed to test the hypothesis that EHDP would interfere with the process of calcium uptake and deposition in evolving myocardial infarction and thereby influence other parameters, including technetium-99m pyrophosphate (Tc-99m PYP) uptake and scintigraphic visualization of the infarcts. Permanent occlusion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of veterinary pharmacology and therapeutics

دوره 32 5  شماره 

صفحات  -

تاریخ انتشار 2009